
THE MCKAY CORRESPONDENCE IN TYPE D4 VIA VGIT
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Abstract. We present an explicit GIT construction which produces both the

minimal resolution of the type D4 surface singularity, and also the orbifold
resolution. Our construction is based on a Tannakian approach which is in

principle applicable to arbitrary quotient singularities.
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1. Introduction

Let Γ be a finite subgroup of SL2(C) and let X = C2/Γ be the corresponding
Kleinian surface singularity. The McKay correspondence famously relates the rep-

resentation theory of Γ to the geometry of the minimal resolution X̃ → X. Initially
a combinatorial observation [6], it is now understood that we should consider the
orbifold

X = [C2/Γ] −→ X

as another possible crepant resolution of X, and then other formulations of the
correspondence should follow. For example there is an equivalence of derived cate-

gories Db(X̃) ∼= Db(X ) [3], which is is an instance of the general prediction that all
crepant resolutions of a given singularity should be derived equivalent. There are
also results relating Gromov-Witten invariants of X and of X [7, 2].

A more elementary question we can ask is whether this birational equivalence

X L9999K X

can be realised via variation-of-GIT. This means looking for some larger variety Z,
with an action of a reductive group G, such that both X and X appear as possible
GIT quotients Z//θG for different choices of stability condition θ.

For type A this question is easy. All the spaces involved are toric, and standard
toric geometry techniques produce the requested construction immediately, with G
a torus and Z a vector space (see Example 2.2). But for types D and E where Γ is
non-abelian it is much less obvious how to proceed.

In this paper we write down an explicit Z and G which satisfy our question
for the simplest non-abelian case, D4. Here Γ is the quaternion group Q, aka the
binary dihedral group BD2. It sits in SL2 as the double cover of the dihedral group
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D2
∼= (Z2)2 ⊂ SO3:

Q SL2

(Z2)2 SO3

Our construction of Z, presented in Section 3, is a little involved. It is the vanishing
locus of an explicit set of equations in a 13-dimensional vector space, carrying a
natural action of the group G = (C∗)3×GL2. Moreover our proof that both X and
X do arise as GIT quotients of Z by G requires quite of lot of hands-on verification.

But behind the messy details there lies a general ansatz, outlined by the first
author and Chan in [1] and reviewed in our Section 2. And this ansatz applies
in principle to any finite quotient singularity. So it would be a worthwhile goal to
replace our hands-on proof with a more abstract and elegant one, which might then
work in greater generality.

Remark 1.1. It is perhaps surprising, given the extensive literature on the McKay
correspondence, that such a construction has not appeared before. The reason is
that most previous approaches have focused on constructing the minimal resolu-
tion X as a moduli space of modules (or sheaves, or quiver representations, or
G-clusters). And since modules never have finite non-trivial stabilizer groups this
approach can never produce the orbifold resolution.

Remark 1.2. In this paper when we discuss ‘GIT quotients’ what we really mean
is the stack-theoretic quotient of the semistable locus. Over the stable locus this
just means taking the quotient as a DM stack rather than as a variety with finite
quotient singularities, which is obviously essential for our purposes.

If there are strictly semistable points then the quotient stack differs more radi-
cally from the quotient variety, since it is an Artin stack, and S-equivalent orbits
are not identified. But we shall show that are no strictly semistable points in our
construction.

Remark 1.3. Ideally our construction would have brought the type D4 McKay
correspondence into the framework of Gauged Linear Sigma Models, with all the
accompanying string-theoretic techniques. Unfortunately, since our Z is not a com-
plete intersection (see Remarks 3.3 and 3.13) it’s not clear that we have achieved
this.

Acknowledgements. The first author would like to thank Daniel Chan for en-
lightening discussions relating to this article. This article was initiated at the ICTP,
the authors would like to thank them for the hospitable enviroment they provided.

2. The Tannakian approach

Suppose we have a finite group Γ acting linearly on a vector space V , and a
corresponding orbifold X = [V/Γ]. How can we produce X as a GIT quotient?

As stated this question is trivial since X is the GIT quotient of V by Γ. But
what if we ask for a construction in which X is one of several possible quotients?
Or we can simplify by ignoring V . Then the question becomes something like: how
can we produce the stack BΓ as a GIT quotient Z//θG, where the group G is some
reductive group with a character lattice of positive rank?

Tannakian duality gives us a heuristic way to approach this problem. What
we need is a presentation of the representation category Rep Γ. By this we mean
something like the following data:

(1) A finite list of irreps U1, ..., Uk which generate all Γ-representations under
tensor products and Schur powers.
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(2) A finite list of isomorphisms

Bt : Ut
∼−→ Vt

where Ut and Vt are some given combinations of the U ′is, formed by sums,
products and Schur powers. These Bi’s should generate all isomorphisms
in Rep Γ.

(3) A finite list of relations that hold between the Bt’s, generating all such
relations.

From this data we can build a GIT problem, as follows. Treat the Ui’s just as
a list of vector spaces, of dimensions d1, ..., dk. Then the Bt’s collectively form an
element of the vector space

H =

s⊕
t=1

Hom(Ut,Vt)

which carries a natural action of the group

G = GLd1 × ...GLdk

and the relations (3) cut out a G-invariant subvariety Z ⊂ H. There is an open set
Ho ⊂ H where each Bt is an isomorphism and a corresponding open set:

Zo = Z ∩Ho

Tannakian duality guarantees that the stabilizer group of any point in Zo is our
finite group Γ, so at the very least we have a point in the GIT quotient stack that
has the correct isotropy. What we’d still have to check is that:

• Zo is the semistable locus for some stability condition θ, and
• G acts transitively on Zo.

If these two conditions hold then the GIT quotient Z//θG is BΓ.

Let’s suppose that we have solved this problem, and return to our original prob-
lem of constructing [V/Γ]. The vector space V is a Γ-representation, so some
combination of the irreps U1, ..., Uk, and there is a corresponding G-representation
which we could also denote by V . The obvious candidate solution to our problem
is to take the variety Z×V with its action of G. If we can find a stability condition
θ such that the θ-semistable locus is Zo × V , and G acts transitively on Zo, then:

Z//θG = [V/Γ]

And there are certainly other possible GIT quotients since the the character lattice
of G has rank k. We can hope to find geometric resolutions of V/Γ amongst these
other possible quotients.

Remark 2.1. If Γ lies in SL(V ) then the singularity V/Γ is Gorenstein and the
orbifold [V/Γ] is a crepant resolution, so we could hope to get crepant geometric
resolutions amongst the other resolutions. In our main example Γ = Q (Section 3)
this does indeed happen. But we have not been able to find an a priori reason why
these other quotients - even if they are resolutions - should be crepant.

Example 2.2. Let Γ be the cyclic group Cn. Then Rep Γ is generated by a single
1-dimensional irrep U , subject to the single isomorphism:

B : U⊗n
∼−→ C

There are no relations to impose on B.
Now we can build our GIT problem. The group G is GL(U) ∼= C∗, acting on

the vector space H = Hom(U⊗n,C). So H is one-dimensional with a C∗ action of
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weight −n, and Z = H. For one of the two possible stability conditions it is indeed
true that the semistable locus is Z0 ∼= C∗, and the G-action on this is transitive, so

Z//G ∼= BCn

(the other GIT quotient is empty).
Now consider the type An−1 Kleinian singularity X = V/Cn, where:

V = U ⊕ U⊗n−1

Our candidate for constructing resolution of this singularity is the larger GIT prob-
lem Z × V , which is simply C3 carring a C∗ action of weights (−n, 1, n − 1). We
see that one of the GIT quotients is indeed the orbifold resolution [V/Cn].

The other generic GIT quotient is a non-affine orbifold given by the total space
of the canonical bundle on weighted P1

1:n−1. This is another crepant resolution of
the singularity X.

If we want the fully geometric (i.e. non-orbifold) resolution we need a more re-
dundant presentation of RepCn. We take all the non-trivial characters U1, ..., Un−1,
and isomorphisms:

Bi : U1 ⊗ Ui
∼−→ Ui+1 for i ∈ [1, n− 2], Bn−1 : U1 ⊗ Un−1

∼−→ C

There are still no relations. This leads us to a GIT problem

Z × V ∼= Cn+1

with an action of the torus
∏
iGL(Ui) ∼= (C∗)n−1. All GIT quotients will be toric

surfaces, and indeed this is just the standard construction of the surface X̃ which
minimally resolves the An singularity. The orbifold [V/Cn] appears as another of
the possible quotients.

In the previous example we avoided having relations on the Bt’s. But when we
move to non-abelian cases the relations are essential, and in practice are the hardest
part of implementing our ansatz.

Example 2.3. Let Γ = S3. We present this case both because it is the smallest
non-abelian group but also because it shares some similarities with the group Q
which is the focus of Section 3.

The irreps of S3 can be generated from the single 2d irrep U , and there is an
isomorphism:

B : Sym2 U −→ U ⊕ C
The second component of B gives an inner product

b : U
∼−→ U∨

which extends to an inner product on U ⊕ C. But the space Sym2 U also carries
something close to an inner product, namely the canonical isomorphism:

J : Sym2 U
∼−→ Sym2 U∨ ⊗ (detU)2

The map B is, roughly speaking, an isometry with respect to these inner products.
The precise statement is that the following relation holds:

B∨ ◦ (b, 1) ◦B = (detB)J (2.4)

Note that detB ∈ (detU)−2.
We believe that the data of U,B and the relation (2.4) is a presentation of the

category S3-rep. If we accept this claim, our ansatz leads us to consider the vector
space

H = Hom(Sym2 U,U ⊕ C)
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with its action of G = GL(U) ∼= GL2, and the G-invariant subvariety Z ⊂ H cut
out by (2.4). It’s not hard to check directly that G does indeed act transitively on
the open set Zo, with quotient:

[Zo/G] = BS3

But we have not attempted the stability analysis.

If one wanted to pursue this example further it would be interesting to set
V = U ⊕ U since the quotient V/S3 is (up to a trivial factor) the same as the
3rd symmetric product of C2. Thus one might hope to realise the birational trans-
formation

[(C2)⊕3/S3] L9999K Hilb3(C2)

via VGIT.

3. The construction

In this section we apply the heuristics of Section 2 to the quaternion group Q
and the corresponding D4 Kleinian singularity V/Q.

First we note that Q has four non-trivial irreps of dimensions 1,1,1 and 2. So
we take four vector spaces L1, L2, L3 and V , where dimLi = 1 for each i and
dimV = 2. Then - guided by isomorphisms that hold in the representation ring -
we form the vector space

H = {(α1, α2, α3, β, B)}
where:

αi ∈ Hom(L2
i , detV )

β ∈ Hom
(
(detV )2, L1L2L3

)
B ∈ Hom

(
Sym2 V,

⊕
i

Li
)

Note that dimH = 1 + 1 + 1 + 1 + 9 = 13 and it carries a natural action of the
group:

G = GL(L1)×GL(L2)×GL(L3)×GL(V )

∼= (C∗)3 ×GL2

Next we need to identify the relations that hold between these isomorphisms in
the category RepQ, so we can specify our invariant subvariety Z ⊂ H. For this we
need to introduce a little more notation.

Let J denote the canonical isomorphism

J : Sym2 V
∼−→ Sym2 V ∨ ⊗ (detV )⊗2

as in Example 2.3. We observe that the αi’s give us a similar structure on the space⊕
i Li, since we can assemble them into a linear map:

A =

α1 0 0
0 α2 0
0 0 α3

 :
⊕
i

Li −→
⊕
i

L∨i ⊗ detV

The equations we want to write are, approximately, the statement that B is an
isometry with respect to these two inner products. In fact in the open set

Ho = {αi 6= 0∀i, β 6= 0, detB 6= 0} ⊂ H (3.1)

that is exactly the condition we want. But to extend over the whole of H we need
the following three equations, which are the key ingredient in our construction.
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B∨AB = α1α2α3β
2J (E1)

BJ−1B∨A = α1α2α3β
2I (E2)

∧2B = βABJ−1 (E3)

In the second equation I denotes the identity map on ⊕iLi. Implicit in third
equation is the canonical isomorphism between∧2(Sym2 V ) and Sym2 V ∨⊗(detV )3,
which means we can read ∧2B as a map:

∧2B : Sym2 V ∨ −→
(
L2L3 ⊕ L1L3 ⊕ L1L2

)
⊗ (detV )−3

Remark 3.2. We can write our equations more concisely by denoting

ω = α1α2α3β
2 and C = J−1B∨A

so E1, E2, E3 become simply:

CB = ω, BC = ω, ∧2B = βC∨

Remark 3.3. The subvariety Z is unfortunately quite far from being a complete
intersection. Indeed, in the open set Ho (3.1) taking the determinant of E3 shows
that:

detB = β3α1α2α3

But if B is invertible then

∧2B = (detB)(B∨)−1

automatically, so E1 and E2 follow immediately from E3.
However, outside Ho the first two equations are independent of the third, and our

construction really does require all of them. See Remark 3.13 for a full justification
of this claim.

Our VGIT construction is the affine variety Z × V , with the action of the group
G. Note that a character of G must be of the form Lθ11 L

θ2
2 L

θ3
3 (detV )θ4 so is specified

by four integers. The main result of this paper is:

Theorem 3.4. Let ϑ be the character (1, 1, 1, 1).

(1) The GIT quotient (Z × V )//−ϑG is the orbifold [V/Q].

(2) The GIT quotient (Z × V )//ϑG is the minimal resolution of V/Q.

We split the proof of this theorem into the following five lemmas.

Let Zo ⊂ Z be the intersection of Z with Ho. This is the locus in Z where B is
invertible or equivalently where α1α2α3β 6= 0.

Lemma 3.5. The stack [Zo/G] is equivalent to BQ.

Of course this is exactly what our Tannakian approach was supposed to achieve,
but we need to check it since we haven’t proven that our chosen data really do give
a presentation of Rep(Q).

Proof. The subgroup GL2 ⊂ G acts on Zo via the usual homomorphism GL2 →
SO3oC∗. Since this is a surjection it’s clear that the action of G is transitive (note
that in Zo the value of β is determined from the other variables by E3).

Let’s examine the isotropy in the quotient group:

G/Z2
∼= (C∗)3 × (SO3 oC∗)
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The subgroup fixing the values of (α1, α2, α3, B) is the group (Z2)3, embedded
diagonally in (C∗)3 × O3, and to also fix β we must lie in the index-two subgroup
(Z2)2 ⊂ SO3. Hence the isotropy group in G is the double cover of this in GL2,
which is Q. �

Lemma 3.6. The (−ϑ)-stable locus in Z × V is Zo × V and there are no strictly
semistable points.

Proof. A point with αi = 0 is destablized by the action of the 1-parameter subgroup
GL(Li). Now suppose that all the αi’s are non-zero but β = 0. Then E2 implies
that the image of B∨ is an isotropic line in Sym2 V ∨, i.e. it lies in a line spanned
by some degenerate quadratic form. It follows that we can find a 1-parameter
subgroup of GL(V ) which fixes B and destablizes the point.1 So all points outside
Zo × V are unstable.

The function

α2
1α

2
2α

2
3β

2(detB)

is (−ϑ)-semi-invariant and doesn’t vanish in Zo×V , so all these points are semistable.
And by Lemma 3.5 all these points have finite isotropy groups so there cannot be
any strictly semistable points. �

This completes the proof of Theorem 3.4 (1). Now we turn our attention to the
opposite stability condition ϑ.

To prove part (2) of the theorem we will utilize the standard construction of the
minimal resolution as a moduli space of representations of a preprojective algebra,
so we take a moment to review the relevant details of that construction (see e.g.
[4] for more background).

The preprojective algebra is the basic algebra which is Morita equivalent to the
skew-group ring Sym• V ∨ o Q, so its representations are equivalent to sheaves on
the orbifold [V/Q]. We consider representations of the following form:

L1

C V L2

L3

E1

E0

D0

D1

D2

D3

E2

E3

(3.7)

Here V,L1, L2, L3 are the same vector spaces of dimensions 2,1,1,1 which we’ve
used above, and each Di, Ei is a linear map. The relations in the algebra are that
DiEi = 0 for each i, and

3∑
i=1

EiDi − E0D0 = 0

(the minus sign is an optional convention that is convenient for us). The group
acting is our same group G, so ϑ gives a stablity condition on this moduli stack
of representations. An elegant observation of King [5] is that a representation is
stable for this character iff it is generated from vertex 0 (the vertex decorated with
C), which means the following two conditions hold:

• Di 6= 0 for each i = 1, 2, 3.

1C.f. the subgroup µ in Table 1.
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• For some i ∈ {1, 2, 3}, V is spanned by E0 and the image of Ei.

There are no strictly semistable representations.

The moduli space of stable representations turns out to be the minimal resolution
X of V/Q. Our claim is that the variety Z contains enough information about the
representation theory of Q that we can replicate this construction.

First we need a little more notation. For each i we have a component

Bi : Sym2 V → Li

of B. We denote

Bxi = Bi(x,−) : V → Li

and recall that ω denotes the two-form:

ω = α1α2α3β
2 ∈ (detV )−1

Then for each point (α1, α2, α3, β, B, x) ∈ H × V we associate a representation of
the quiver (3.7) by setting:

E0 = x : C→ V

D0 = ω(x,−) : V → C

Di = Bxi : V → Li

Ei = αi(B
x
i )∨ : Li → V

Thus we have a map from [(H×V )/G] to the stack of representations of the free
quiver.

Lemma 3.8. If (α1, α2, α3, β, B, x) lies in Z×V then the associated representation
satifies the preprojective algebra relations.

Proof. At the four external vertices the relation is essentially automatic; if L is a
1-dimensional vector space and E : L→ V is any linear map then the composition

E∨ ◦ E : L −→ L−1 detV

is zero. At the central vertex the required relation is:∑
i

αi(B
x
i )∨ ◦Bxi − x ◦ ω(x,−) = 0

By construction this is a trace-free endomorphism of V , and the space of such
endomorphisms can be canonically identified with Sym2 V ⊗(detV )−1. The relation
is E1 evaluated at the point x2 ∈ Sym2 V . �

Lemma 3.9. Given a point

(z, x) = (α1, α2, α3, β, B, x) ∈ Z × V
the following are equivalent:

(i) The point (z, x) is ϑ-semistable.
(ii) The associated representation is ϑ-stable.
(iii) We have Bxi 6= 0 for each i, and for some i the space V is spanned by x

and the image of αi(B
x
i )∨.

Proof. That (iii)⇒(ii) is immediate from our discussion of King stability above.
To see that (ii)⇒(i) we just note that if a representation is stable then there is a
ϑ-semi-invariant function on the moduli stack which doesn’t vanish at this point.
Pulling this function back shows that (z, x) is ϑ-semistable.
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α1 α2 α3 β B1 B2 B3

λ1 -2 0 0 1 (1, 1, 1) (0,0,0) (0,0,0)

λ2 0 -2 0 1 (0,0,0) (1,1,1) (0,0,0)

λ3 0 0 -2 1 (0,0,0) (0,0,0) (1,1,1)

µ 1 1 1 -2 (0,-1,-2) (0,-1,-2) (0,-1,-2)

µ+ λ1 -1 1 1 0 (1,0,-1) (0,-1,-2) (0,-1,-2)

µ+ λ1 + λ2 -1 -1 1 0 (1,0,-1) (1,0,-1) (0,-1,-2)

2µ+
∑
λi 0 0 0 -1 (1,-1,-3) (1,-1,-3) (1,-1,-3)

Table 1.

It remains to prove that if (z, x) does not satisfy the condition (iii) then it
is unstable. We prove this by some slightly tedious analysis of the action of 1-
parameter subgroups in G.

First note that the 1-parameter subgroup

t 7→ (t, t, t, t1V ) ∈ G

destabilizes points with x = 0, so we can assume x 6= 0, and then extend it arbitrar-
ily to a basis x, y ∈ V . This basis induces co-ordinates on each space Sym2 V ∨⊗Li,
i.e. it splits each quadratic form Bi into:

(pi, qi, ri) =
(
Bi(x

2), Bi(xy), Bi(y
2)
)

For brevity we write λi = GL(Li) and we let µ ⊂ G be the 1-parameter subgroup
defined by:

µ(t) : x 7→ x, µ(t) : y 7→ ty

These four 1-parameter subgroups all pair positively with ϑ, and generate a torus
which acts on H×V but fixes x ∈ V . To show that (z, x) is ϑ-unstable it is sufficient
to show that z is destabilized by some 1-parameter subgroup in this torus. For
convenience we present the weights of this torus action in Table 1 together with the
weights of some particular 1-parameter subgroups. Note that the three columns of
entries under each Bi are the weights of (pi, qi, ri) respectively.

A point is destabilized by one of these 1-parameter subgroups if all co-ordinates
carrying positive weights are zero. By inspection the following subsets are unstable:

{β = 0, Bi = 0} for any i

{α1 = 0, α2 = 0, α3 = 0}

{α2 = 0, α3 = 0, p1 = 0} (and permutations thereof)

{α3 = 0, p1 = 0, p2 = 0} (and permutations thereof)

{p1 = 0, p2 = 0, p3 = 0}

Now suppose that for each i, the image of αi(B
x
i )∨ lies in the span of x. This is

equivalent to αipi = 0 for each i. It follows that (z, x) lies in one of the unstable
subsets in the list above.

It remains to show that if Bxi = 0 for any i then (z, x) is unstable, and for
concreteness let us suppose Bx1 = 0, i.e. that p1 = q1 = 0. We consider two cases.

Firstly suppose that B1 = 0, i.e. that r1 = 0 too. Then E3 implies that

0 = B1 ∧B2 = βα3B3J
−1 and 0 = B1 ∧B3 = βα2B2J

−1
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so in particular

βα2p2 = βα3p3 = 0

from which it follows again that (z, x) lies in one of the unstable subsets listed
above.

Secondly, suppose that B1 6= 0, i.e. that r1 6= 0. Then since E2 implies that

α1B1J
−1Bj = 0 and αjB1J

−1Bj = 0 for j = 2, 3

we must have:

α1p2 = α1p3 = α2p2 = α3p3 = 0

It follows again that (z, x) must lie in one of the unstable subsets listed above. �

Lemma 3.10. There are no strictly ϑ-semistable points in Z × V , and the GIT
quotient (Z × V )//ϑG is isomorphic to the space of ϑ-stable representations of the
preprojective algebra.

Proof. From our previous lemmas we know we have a G-equivariant morphism
from the semistable locus in Z × V to the space of stable representations of the
algebra. We also know (Lemma 3.9(iii)) that the semistable locus has a Zariski-
open cover U1 ∪ U2 ∪ U3, mapping to a corresponding open cover V1 ∪ V2 ∪ V3
of the target. We will show by direct inspection that each map Ui → Vi is an
isomorphism. This proves the lemma, in particular there cannot be any strictly
ϑ-semistable points since there are no strictly semistable representations and the
morphism is an injection.

For concreteness we show that U1 → V1 is an isomorphism. In the locus U1 we
have α1 6= 0 and we know that x and (α1(Bx1 )∨ ◦B1)(x2) from a basis for V at all
points. So if we identify V with C2, and L1 with C, then up to a unique element
of GL(L1)×GL(V ) we can set

x = (1, 0), α1 = 1, B1 = (1, 0, r1)

for some r1 ∈ C. So B1(x2) = 1 and α1(Bx1 )∨(1) = (0, 1). If we also pick basis
vectors for L2 and L3 then our remaining variables are

α2, α3, β, B2 = (p2, q2, r2), and B3 = (p3, q3, r3)

and the only group acting is the torus GL(L2)×GL(L3) ∼= (C∗)2. Semistability is
the condition that (p2, q2) 6= (0, 0) and (p3, q3) 6= (0, 0).

By E2 we have:

B1J
−1B1 = 2r1 = β2α2α3 = ω

B1J
−1B2 = r2 + r1p2 = 0

B1J
−1B2 = r3 + r1p3 = 0

so all the ri variables are redundant. And by E3 we have

B1 ∧B2 = (−r1q2, r1p2 − r2, q2) = βα3(r3, −
q3
2
, p3)

B3 ∧B1 = (r1q3, r3 − r1p3, −q3) = βα2(r2, −
q2
2
, p2)

hence:

q2 = βα3p3, q3 = −βα2p2 (3.11)

Finally by equation E1 we have:

1 + α2p
2
2 + α3p

2
3 = 0 (3.12)

One can verify that these equations (3.11) and (3.12), together with the equations
for the ri’s above, imply all the remaining components of E1, E2 and E3.
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Now consider our open set U1 in the space of stable representations. We can
similarly fix

E0 = (1, 0), D1 = (1, 0)>, E1 = (0, 1)

leaving only (C∗)2 acting. We have Di 6= 0 for i = 2, 3, and we know Di ◦ Ei = 0.
So if we write Di = (p̂i, q̂i)

> for i = 2, 3 then we must have

D0 = (−ω̂, 0)> and Ei = α̂i(−q̂i, p̂i), i = 2, 3

for some ω̂, α̂2, α̂3. Moreover the relation at the central vertex implies three equa-
tions:

α̂2p̂
2
2 + α̂3p̂

2
3 + 1 = 0

α̂2p̂2q̂2 + α̂3p̂3q̂3 = 0

α̂2q̂
2
2 + α̂3q̂

2
3 − ω̂ = 0

The first implies that (α̂2p̂2, α̂3p̂3) 6= (0, 0), then the second implies that

(q̂2, q̂3) = β̂(α̂3p̂3,−α̂2p̂2)

for some β̂, and then the third becomes equivalent to ω̂ = β̂2α̂2α̂3. Comparing
with (3.11), (3.12) above it is evident that V1 is isomorphic to U1. �

Remark 3.13. Let us conclude by justifying the necessity of all three equations E1,
E2 and E3, as promised in Remark 3.3.

Firstly, equation E3 is clearly necessary since without it the variety Z would
have (at least) two irreducible components related by β 7→ −β.

Now consider the subset

H ′ =
{
β = 0, αi 6= 0 ∀i

}
⊂ H

In this subset:

E1 says that the image of B is isotropic in
⊕
Li.

E2 says that the image of B∨ is isotropic in Sym2 V ∨.
E3 says that B has rank 1.

The first two are independent, but either of them imply the third.
Take a generic point (u, v) ∈ H ′ × V where E2 holds but E1 fails. Then the

associated quiver representation will not satisfy the preprojective algebra relations,
but will still be generated from vertex 0 and hence King stable. So (u, v) is ϑ-
semistable. This shows that equation E1 is necessary for our construction.

Now instead take a point (u, v) where E1 holds but E2 fails. Using the functions(
BiJ

−1B∨
)
ij
∈ LiLj(detV )−2

together with α1, α2, α3 it is easy to find a non-vanishing function which is semi-
invariant for some power of −ϑ. So (u, v) is (−ϑ)-semistable (strictly, since the
stabilizer is infinite). Thus Lemma 3.6 would fail without equation E2.
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